Toward Autonomic Computing: Adaptive Neural Network for Trajectory Planning
نویسنده
چکیده
Cognitive approach through the neural network “NN” paradigm is a critical discipline that will help bring about autonomic computing “AC.” NN-related research, some involving new ways to apply control theory and control laws, can provide insight into how to run complex systems that optimize to their environments. NN is one kind of AC system that can embody human cognitive powers and that can adapt, learn, and take over certain functions previously performed by humans. In recent years, artificial neural networks have received a great deal of attention for their ability to perform nonlinear mappings. In trajectory control of robotic devices, neural networks provide a fast method of autonomously learning the relation between a set of output states and a set of input states. In this article, we apply the cognitive approach to solve position controller problems using an inverse geometrical model. In order to control a robot manipulator in the accomplishment of a task, trajectory planning is required in advance or in real time. The desired trajectory is usually described in Cartesian coordinates and needs to be converted to joint space for the purpose of analyzing and controlling the system behavior. In this article, we use a memory neural network (MNN) to solve the optimization problem concerning the inverse of the direct geometrical model of the redundant manipulator when subject to constraints. Our approach offers substantially better accuracy, avoids the computation of the inverse or pseudoinverse Jacobian matrix, and does not produce problems such as singularity, redundancy, and considerably increased computational complexity.
منابع مشابه
Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملAn Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling
With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملSaturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study
In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCINI
دوره 1 شماره
صفحات -
تاریخ انتشار 2007